Calculus AB
 Lesson: Thursday, April 9

Learning Target:

Students will integrate functions involving inverse trig functions.

Let's Get Started:
Read Article: Integrals Involving Inverse Trig Functions Watch Video: Integrals Involving Inverse Trig

Practice:

1. Here are the formulas we will be using for this lesson:

2. We will use these formulas to solve each problem in this lesson.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{49-x^{2}}} & =\int \frac{d x}{\sqrt{(7)^{2}-x^{2}}} \\
& =\sin ^{-1}\left(\frac{x}{7}\right)+K
\end{aligned}
$$

3. These formulas was used to complete the following problem:

We could also write this answer as:

$$
\arcsin \left(\frac{x}{7}\right)+K
$$

Here is another worked out examples:
$\int_{0}^{1} \frac{2 d x}{\sqrt{9-4 x^{2}}}$
Let $u=2 x$ then $d u=2 d x$.
Our integral becomes:

$$
\begin{aligned}
\int_{0}^{1} \frac{2 d x}{\sqrt{9-4 x^{2}}} & =\int_{x=0}^{x=1} \frac{d u}{\sqrt{(3)^{2}-u^{2}}} \\
& =\left[\sin ^{-1}\left(\frac{u}{3}\right)\right]_{x=0}^{x=1} \\
& =\left[\sin ^{-1}\left(\frac{2 x}{3}\right)\right]_{0}^{1} \\
& =\left[\sin ^{-1}\left(\frac{2}{3}\right)-\sin ^{-1} 0\right] \\
& =0.7297
\end{aligned}
$$

We could have done it in much fewer steps by leaving it in terms of " u ", as follows:

$$
\begin{aligned}
\int_{0}^{1} \frac{2 d x}{\sqrt{9-4 x^{2}}} & =\int_{0}^{2} \frac{d u}{\sqrt{(3)^{2}-u^{2}}} \\
& =\left[\sin ^{-1}\left(\frac{2}{3}\right)-\sin ^{-1} 0\right] \\
& =0.7297
\end{aligned}
$$

Note the change in the limits when $d x$ is changed to $d u$ during the integration.
This is because we let $u=2 x$.
Hence the limits for x of

$$
x=0 \text { and } x=1
$$

have to be changed for u to

$$
u=0 \text { and } u=2 .
$$

One more worked out example:
Find the area bounded by the curve $y=\frac{1}{1+x^{2}}$ and the lines $x=0, y=0$ and $x=2$.
The curve $y=\frac{1}{1+x^{2}}$ lies entirely above the x-axis for all values of x, so to find the area we can simply integrate. (If part of the curve was below the x-axis, we would need to split it into different portions and take absolute values.)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2} \frac{d x}{1+x^{2}} \\
& =\left[\tan ^{-1} x\right]_{0}^{2} \\
& =\left[\tan ^{-1} 2-\tan ^{-1} 0\right] \\
& =1.1071 \text { units }^{2}
\end{aligned}
$$

Practice: Evaluate the following.

1. $\int \frac{3 d x}{25+16 x^{2}}$
2. $\int \frac{2 d x}{x^{2}+8 x+17}$
3. $\int \frac{d x}{\sqrt{2 x-x^{2}}}$

Answer Key:

Once you have completed the problem, check your answers here.

1. We can write our integral as:

$$
\int \frac{3 d x}{25+16 x^{2}}=3 \int \frac{d x}{(5)^{2}+(4 x)^{2}}
$$

For the formula, we need:
$a=5 ; u=4 x ; d u=4 d x$
Re-arranging that last expression gives: $\frac{d u}{4}=d x$.
We are now ready to perform the integration.

$$
\begin{aligned}
\int \frac{3 d x}{25+16 x^{2}} & =\frac{3}{4} \int \frac{d u}{(5)^{2}+u^{2}} \\
& =\frac{3}{4} \times \frac{1}{5} \tan ^{-1}\left(\frac{u}{5}\right)+K \\
& =\frac{3}{20} \tan ^{-1}\left(\frac{4 x}{5}\right)+K
\end{aligned}
$$

2. $\int \frac{2 d x}{x^{2}+8 x+17}$

Now

$$
\begin{aligned}
x^{2} & +8 x+17=\left(x^{2}+8 x+16\right)+1 \\
& =(x+4)^{2}+1
\end{aligned}
$$

So if we let $u=x+4$, then $d u=d x$ and we have:

$$
\begin{aligned}
\int \frac{2 d x}{x^{2}+8 x+17} & =2 \int \frac{d u}{u^{2}+1} \\
& =2 \tan ^{-1} u+K \\
& =2 \tan ^{-1}(x+4)+K
\end{aligned}
$$

Answer Key:

Once you have completed the problem, check your answers here.
3. $\int \frac{d x}{\sqrt{2 x-x^{2}}}$

This is not in the form of either of our new formulas, but we can do some juggling to get it into a useful form.
First, we recognise that
$2 x-x^{2}=-\left(x^{2}-2 x\right)$
We now add 1 at the front, then compensate for it inside the bracket:

$$
\begin{aligned}
& =1-\left(x^{2}-2 x+1\right) \\
& =1-(x-1)^{2}
\end{aligned}
$$

With $a=1 ; u=x-1$, and $d u=d x$, our integral becomes:

$$
\begin{aligned}
\int \frac{d x}{\sqrt{2 x-x^{2}}} & =\int \frac{d u}{\sqrt{1-u^{2}}} \\
& =\arcsin u+K
\end{aligned}
$$

$$
=\arcsin (x-1)+K
$$

Additional Practice:

Additional Practice with Answers

In your Calculus book Read through Section 5.7 and complete problems 1, 9, 23, 33, 39 on page 385

